sábado, 15 de agosto de 2020



ESTADOS DE ENERGIAS  QUÂNTICO DE GRACELI.

se tem sensibilidades térmicas diferentes conforme os tipos de materiais e tipos de energias que são empregadas, provando assim que os estados de energias e quântico variam conforme são empregadas tipos diferenciados de energias.


ou seja, com amesma temperatura se tem sensibilidades variadas conforme esta temperaura foi produzida sobre um esmo material.

e o mesmo acorre sobre materiais diferenciados.

ou seja, estados de energias variados em mesmos materiais, e também em materiais diferenciados.
X


TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]



As equações de Lippmann–Schwinger (em homenagem a Bernard Lippmann e Julian Schwinger[1]) é uma das equações mais utilizadas para descrever colisões de partículas – ou, mais precisamente, de espalhamento – na mecânica quântica. Pode ser usado para estudar o espalhamento das moléculas, átomos, nêutrons, fótons ou quaisquer outras partículas e é importante principalmente para o estudo de física óptica, atômica e molecularfísica nuclear e física de partículas, mas também para os problemas de espalhamento em geofísica. Ela refere-se a função de onda espalhada com a interação que produz o espalhamento (potencial espalhador) e, por conseguinte, permite o cálculo dos parâmetros experimentais relevantes (amplitude de espalhamento e a sessão de choque).
A equação mais fundamental para descrever qualquer fenômeno quântico, incluindo o espalhamento, é a equação de Schrödinger. Em problemas físicos esta equação diferencial deve ser resolvida com a entrada de um conjunto adicional de condições iniciais e/ou condições de contorno para o sistema físico estudado. A equação de Lippmann-Schwinger é equivalente à equação Schrödinger mais as condições de contorno para problemas típicos de espalhamento. A fim de incorporar as condições de contorno, a equação Lippmann-Schwinger deve ser escrita como uma equação integral.[2] Para problemas de espalhamento, a equação de Lippmann-Schwinger muitas vezes é mais conveniente do que a equação de Schrödinger.
A equação de Lippmann-Schwinger é, de forma geral, (na verdade são duas equações mostrados abaixo, uma para  e outra para ):
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Nas equações acima,  é a função de onda de todo o sistema (os dois sistemas considerados como um todo colidem) em um tempo infinito antes da interação; e , em um tempo infinito após a interação (a "função de onda espalhada"). O potencial de energia  descreve a interação entre os dois sistemas em colisão. O Hamiltoniano  descreve a situação em que os dois sistemas estão infinitamente distantes e não interagem. As suas autofunções são  e seus autovalores são as energias . Finalmente,  é uma questão técnica matemática utilizada para o cálculo das integrais necessárias para resolver a equação e não tem nenhum significado físico.


Uso[editar | editar código-fonte]

A equação de Lippmann-Schwinger é útil num grande número de situações que envolvem o espalhamento de dois corpos. Para três ou mais corpos colidindo ele não funciona bem por causa das limitações matemáticas; as equações de Faddeev podem ser utilizadas como uma alternativa.[3] No entanto, existem aproximações que podem reduzir um problema de muitos corpos a um conjunto de problemas de dois corpos numa variedade de casos. Por exemplo, em uma colisão entre elétrons e moléculas, pode haver dezenas ou centenas de partículas envolvidas. Mas o fenômeno pode ser reduzido a um problema de dois corpos, descrevendo todos os potenciais das partículas constituintes juntamente com um pseudopotencial.[4] Nestes casos, as equações Lippmann-Schwinger podem ser utilizadas. Naturalmente, as principais motivações destas abordagens são também a possibilidade de fazer os cálculos com os esforços computacionais otimizados.

Derivação[editar | editar código-fonte]

Vamos supor que o Hamiltoniano pode ser escrito como
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde H e H0 possuem os mesmos autovalores e H0 é a Hamiltoniana de uma partícula livre. Por exemplo, na mecânica quântica não-relativística H0 pode ser
.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Intuitivamente V é a energia de interação do sistema. Esta analogia é um pouco enganadora, pois as interações tipicamente mudam a energia E dos estados estacionários, mas H e H0 possui um espectro idêntico Eα. Isto significa que, por exemplo, um Estado vinculado que é um autoestado da Hamiltoniana interagente também será um autoestado do Hamiltoniano livre. Isto está em contraste com o Hamiltoniano obtido desligando todas as interações, nesse caso, não haveria estados ligados. Assim, pode-se pensar em H0 como o Hamiltoniano livre para os estados ligados com parâmetros eficazes que são determinados pelas interações.
Seja um autoestado de H0:
.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Agora, se adicionarmos a interação  precisaremos resolver
.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Por causa da continuidade dos autovalores de energia, queremos que  quando .
Uma solução para essa equação pode ser
.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde a notação 1/A indican o inverso de A. No entanto E − H0 é singular uma vez que E é um autovalor de H0.
Como está descrito abaixo, essa singularidade é eliminada por duas vias distintas, fazendo o denominador complexo:
.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Por inserção de um conjunto completo de estados de partículas livres,
,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


a equação de Schrödinger é transformada em uma equação integral. Os estados "in" (+) e "out" (−) são assumidos para formar bases, no passado distante e num futuro distante tendo, respectivamente, a aparência de estados de partículas livres, mas sendo autofunções do Hamiltoniano completo. Assim, adotando-se índices, a equação pode ser escrita como:
.

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Métodos de solução[editar | editar código-fonte]

Do ponto de vista matemático a equação Lippmann-Schwinger na representação de posição é uma equação integral do tipo Fredholm. Ela pode ser resolvida por discretização. Uma vez que é equivalente a equação de Schrödinger independente do tempo com condições de fronteira apropriadas, que também podem ser resolvidas por métodos numéricos para equações diferenciais. No caso do potencial esfericamente simétrico , geralmente é resolvido pelo método de ondas parciais. Para altas energias e/ou um fraco potencial, pode também ser resolvido pelo método perturbativo utilizando a aproximação de Born. O método conveniente, também no caso da física de muitos corpos, como na descrição de colisões atômicas, nucleares ou moleculares é o método da R-matrix de Wigner e Eisenbud. Outra classe de métodos são baseadas na expansão do potencial ou do operador de Green, como os métodos de frações contínuas de Horáček e Sasakawa. Uma classe de métodos muito importante é baseada em princípios variacionais, por exemplo princípio variacional de Schwinger, e o método Schwinger-Lanczos combinando o princípio variacional de Schwinger com o algorítimo de Lanczos.

Interpretação dos estados "in" e "out"[editar | editar código-fonte]

O paradigma da matriz S[editar | editar código-fonte]

Na formulação da matriz S da física de partículas, que foi iniciada por John Archibald Wheeler entre outros, todos os processos físicos são modelados de acordo com o seguinte paradigma.
Começa-se com um estado de várias partículas não-interagentes num passado distante. A não-interação entre eles não significa que todas as forças de tenham sido desligadas, por exemplo os protons se desintegrariam, mas sim que existe uma livre-interação do Hamiltoniano H0, para que os estados ligados tenham o mesmo espectro do nível de energia conforme o Hamiltoniano H. Este estado inicial é referido como o estado in. Intuitivamente, ele consiste em estados ligados que estão suficientemente bem separados, e que suas interações com os outros são ignorados.
A ideia é que qualquer processo físico que se está tentando estudar pode ser modelado como um processo de espalhamento desses estados ligados de forma separada. Este processo é descrito plenamente pelo hamiltoniano H, mas uma vez encerrada a interação, todos os novos estados ligados separam-se novamente e encontra-se um novo estado não interagente chamado o estado out. A matriz S é mais simétrica sob a relatividade do que o Hamiltoniano, porque não necessita de uma escolha de intervalos temporais para ser definida.
Este paradigma permite calcular as probabilidades de todos os processos que temos observado em 70 anos de experimentos nos colisores de partículas com uma precisão notável. Mas muitos fenômenos físicos interessantes obviamente não se encaixam nesse paradigma. Por exemplo, quando se quer considerar a dinâmica dentro de uma estrela de nêutrons, por vezes, se quer saber mais a respeito dos processos de decaimento. Em outras palavras, pode-se estar interessado em medições que não estão no futuro assintótico. Às vezes um passado assintótico ou futuro não está disponível. Por exemplo, é muito possível que não haja passado antes do big bang.
Na década de 1960, o paradigma da matriz S foi elevado por muitos físicos a uma lei fundamental da natureza. Na teoria da matriz S, afirmou-se que qualquer quantidade que se pode medir deve ser encontrada na matriz S por algum processo. Esta ideia foi inspirada pela interpretação física de que as técnicas da matriz S poderiam dar aos diagramas de Feynman, o que levou à construção de modelos de ressonância dupla. Mas isso é muito controverso, porque negou-se a validade da teoria quântica de campos baseados em campos locais e Hamiltonianos.

A conexão com Lippmann-Schwinger[editar | editar código-fonte]

Intuitivamente, as funções e autofunções levemente modificadas  do Hamiltoniano total H são os estados in e out. As funções  são não-interagentes e se assemelham aos estados in e out no passado infinito e no futuro infinito.

Criação de pacotes de onda[editar | editar código-fonte]

A representação intuitiva não é muito correta, porque  é uma autofunção do Hamiltoniano e assim em momentos diferentes apenas difere de uma fase. Assim, em particular, o estado físico não evolui e por isso não pode se tornar não-interagente. Este problema é facilmente contornado pelo conjunto  e  em pacotes de ondas com uma distribuição  de energias  sobre uma escala característica . O princípio da incerteza agora permite que as interações dos estados assintóticos ocorram ao longo de uma escala de tempo  de forma que não seja concebível que as interações possam ser desligadas fora deste intervalo. O seguinte argumento sugere que este é realmente o caso.
Plugging the Lippmann–Schwinger equations into the definitions
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


e
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


dos pacotes de onda vemos que, num dado momento, a diferença entre o  e  são dados por pacotes de ondas integrados sobre a energia E.

Condição de contorno[editar | editar código-fonte]

Esta integral pode ser calculada através da definição da função de onda ao longo do plano complexoE e fechando o contorno de E usando um semi-círculo em que as funções de onda desaparecem. A integral sobre o contorno fechado pode então ser calculada, usando o teorema de Cauchy, como uma soma dos resíduos nos vários pólos. Vamos agora argumentam que os resíduos de  aproximam-se de  no tempo  e assim os pacotes de onda correspondentes são iguais no tempo infinito.
Na verdade, para tempos positivos t o fator  dos estados da representação de Schrödinger obriga fechar o contorno no semi-plano inferior. O pólo em  para a equação de Lippmann–Schwinger reflete o tempo de incerteza da interação, enquanto que os pacotes de onda refletem a duração da interação. Ambas as variedades de pólos ocorrem em energias imaginárias finitas que são suprimidas para tempos muito grandes. O pólo da diferença de energia no denominador está no semi-plano superior no caso de , e assim não se encontra dentro do contorno da integral e não contribui para a  integrante. O restante é igual ao pacote de ondas . Assim, para tempos muito grande , identificando  como o estado assintótico não-interagente out.
De maneira similar pode-se integrar o pacote de ondas correspondente a  para tempos negativos. Neste caso, o contorno tem de ser fechado sobre o semi-plano superior, o que ocasiona uma perda de energia no pólo de , pertencente ao semi-plano inferior. Em seguida, verifica-se que os pacotes de ondas  e  são iguais no passado assintótico, identificando  como não-interagente para o estado in.

O denominador complexo das equações de Lippmann–Schwinger[editar | editar código-fonte]

A identificação de  como sendo estados assintóticos é a justificativa para o the  no denominador das equações de Lippmann–Schwinger.

Fórmula para a matriz S[editar | editar código-fonte]

matriz S é definida como sendo o produto interno
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


entre os estados assintóticos a b na representação de Heisenberg. Pode-se obter a formula que relaciona a matriz S para o potencial V utilizando como estratégia o contorno acima, mas desta vez as funções de comutação serão  e . Como resultado, o contorno agora engloba o pólo de energia. Isso pode estar relacionado com  se para uma dada matriz S temos duas  distintas. Identificando os coeficientes das funções  de em ambos os lados da equação se encontra a fórmula de S relativa ao potencial
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Na aproximação de Born, que corresponde a teoria de perturbação de primeira ordem, há uma substituição desta última  com a de sua autofunção correspondente  para o hamiltoniano livre H0, produzindo
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


que expressa a matriz S inteiramente em termos de V e das autofunções do hamiltoniano livre.
Estas fórmulas podem ser utilizadas para calcular a taxa de reação do processo , que é igual a 
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS





Coeficiente de espalhamento[editar | editar código-fonte]

O coeficiente de espalhamento μs [cm-1] descreve um meio que contém muitas partículas espalhadoras em uma concentração descrita por uma densidade volumétrica ρ [cm3]; o coeficiente de espalhamento é essencialmente a seção de choque σs por unidade de volume do meio.[4][5]
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


O recíproco do coeficiente de espalhamento pode ser entendido como a distancia média que a partícula viaja antes de interagir com o meio, ou seja, ser espalhado.





Em teoria da probabilidade e em estatística, uma distribuição de probabilidade descreve o comportamento aleatório de um fenômeno dependente do acaso. O estudo dos fenômenos aleatórios começou com o estudo dos jogos de azar – jogos de dados, sorteios de bolas de urna e cara ou coroa eram motivações para compreender e prever os experimentos aleatórios. Essas abordagens iniciais são fenômenos discretos, o que significa que o número de resultados possíveis é finito ou contável. Entretanto, certas questões revelam distribuições de probabilidade com suporte infinito não contável. Por exemplo, quando o lançamento de uma moeda tende ao infinito, o número de coroas aproxima-se de uma distribuição normal.
Flutuações e variabilidade estão presentes em quase todo valor que pode ser medido durante a observação de um fenômeno, independente de sua natureza, além disso quase todas as medidas possuem uma parte de erro intrínseco. A distribuição de probabilidade pode modelar incertezas e descrever fenômenos físicos, biológicos, econômicos, entre outros. O domínio da estatística permite o encontro das distribuições de probabilidade adaptadas aos fenômenos aleatórios.
Há muitas distribuições de probabilidade diferentes. Entre as distribuições de probabilidade, a distribuição normal tem uma importância particular. De acordo com o teorema central do limite, a distribuição normal aborda o comportamento assintótico de várias distribuições de probabilidade.
O conceito de distribuição de probabilidade é formalizado matematicamente pela teoria da medida – uma distribuição de probabilidade é uma medida muitas vezes vista como uma distribuição que descreve o comportamento de uma variável aleatória discreta ou contínua. Uma medida é uma distribuição de probabilidade se sua massa total for 1. O estudo de uma variável aleatória de acordo com uma distribuição de probabilidade discreta revela o cálculo de somas e de séries, enquanto que o estudo de uma variável aleatória de acordo com uma distribuição de probabilidade absolutamente contínua revela o cálculo de integrais. As funções particulares permitem caracterizar as distribuições de probabilidade como a função de distribuição e a função característica.

Definição informal[editar | editar código-fonte]

Teoricamente uma descrição de probabilidade descreve a característica aleatória de uma experiência aleatória.[1][2] O conceito de experiência aleatória surgiu para descrever um processo real de natureza experimental, em que o acaso intervém com resultados possíveis bem identificados.[3] Por exemplo, em um lançamento de um dado não viciado (um evento aleatório) os resultados podem ser um número entre 1 e 6 com igual probabilidade (de acordo com a distribuição de probabilidade, há a mesma chance de saírem os seis resultados com probabilidade igual a um sexto).
Historicamente distribuições de probabilidade foram estudadas em jogos de azar, jogos de dados, jogos de cartas, entre outros. Se os possíveis resultados dos fenômenos forem números contáveis, a distribuição de probabilidade é chamada discreta. Dar a distribuição de probabilidade significa dar a lista de valores possíveis com suas probabilidades associadas.[1] Ela é dada por meio de uma fórmula, uma tabela de valores, uma árvore de probabilidade ou funções que serão detalhadas nas seções seguintes.
Em um contexto mais amplo, se os números dos resultados possíveis de um fenômeno aleatório forem finitos (contáveis ou incontáveis) em vez de infinitos, a distribuição de probabilidade descreve a distribuição de probabilidade dos resultados possíveis, mas caracterizados como funções (funções densidadefunções distribuição, entre outros) ou como medidas.[1]

Histórico[editar | editar código-fonte]

Ilustração de uma pirâmide formada por feixes convergentes que superam uma curva de Gauss. Ela representa a placa de Galton, concebida em 1889, usada para visualizar a curva de Gauss como distribuição limite.
O uso do acaso existe desde os tempos antigos, especialmente em jogos de azar, em apostas de riscos de transportes marítimos ou em rendas vitalícias.[3] Entretanto, uma das primeiras referências conhecidas para os cálculos de probabilidade é um cálculo elementar sobre a Divina Comédia que aparece apenas no século XV durante o Renascimento.[4] Os primeiros tratados formam o início da teoria da probabilidade, principalmente com base em probabilidades combinatórias. Os problemas surgem à respeito da duração de um jogo de cartas:
Reconhece-se a probabilidade (a aposta) de uma variável (a duração de um jogo) ser menor que um valor (um certo número determinado), que representa a função de distribuição da distribuição de probabilidade de um jogo.
Essa é a tese de Nicolau Bernoulli, publicada em 1711, em que aparece pela primeira vez a distribuição uniforme.[6] Então, outras distribuições apareceram como a distribuição binomial e a distribuição normal, embora suas abordagens não sejam completamente rigorosas[6]— por exemplo, a distribuição normal foi desenvolvida por Abraham de Moivre com uma curva de Gauss por uma aproximação numérica.[7] No século XVIII, outras ideias de distribuições de probabilidade emergiram[6] com a expectativa de uma variável aleatória discreta com Jean le Rond D'Alembert ou de probabilidades condicionais com Thomas Bayes. Algumas distribuições de probabilidade contínuas estão contidas em uma memória de Joseph—Louis Lagrange, de 1770.[6]
O uso rigoroso das distribuições de probabilidade começou a partir do século XIX nas ciências aplicadas como na biometria com Karl Pearson[8] ou na física estatística com Ludwing Boltzmann.[9]
A definição formal das medidas de probabilidade surgiu em 1896 com uma publicação de Émile Borel,[10] continuando com outros matemáticos como Henri—Léon LebesgueMaurice René FréchetPaul Lévy e principalmente Andrei Kolmogorov que formulou os axiomas de probabilidade em 1933.

Definição matemática[editar | editar código-fonte]

Em teoria da probabilidade, uma distribuição de probabilidade é uma medida com massa total igual a 1. Essa medida satisfaz os três axiomas de probabilidade.
Definição[2] — Para um espaço mensurável  é uma distribuição de probabilidade, medida de probabilidade ou simplesmente probabilidade se:
  1.  é uma aplicação de  em [0,1];
  2. ;
  3.  é –aditiva. Isto é, para qualquer família finita ou contável de elementos disjuntos  de   

  4. X
  5. FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

    Uma consequência imediata é: .

 é chamado de espaço de probabilidade.[11] Usualmente a palavra distribuição é usada quando tratamos de uma distribuição de probabilidade de uma variável aleatória  definida em um espaço de probabilidade .
Definição[12] — Seja uma variável aleatória real no espaço de probabilidade. Isto é, uma função mensurável . A distribuição de probabilidade da variável aleatória  é a medida de probabilidade  definida sobre o espaço mensurável  por para qualquer álgebra de Borel real . Em outras palavras,  é a medida de imagem de  para .
Então, para definir a distribuição de uma variável aleatória, transpõe-se a distribuição de probabilidade  de  em uma medida  de .
A representação de uma distribuição por uma variável aleatória não é única.[13] Em outras palavras, duas variáveis aleatórias diferentes ou duas variáveis aleatórias definidas em espaços diferentes podem ter a mesma distribuição. Duas variáveis aleatórias reais  e  têm a mesma distribuição (em termos de igualdade de medidas). Isto é,  para todo . O seguinte teorema permite uma caracterização adicional.
Teorema de transferência[14] ou de transporte[15] — Seja uma variável aleatória real . Logo,

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


para toda função , de tal modo que pelo menos uma das duas integrais existe.[16] A última integral, do ponto de vista da teoria da medida, é uma integral da função  em relação à medida . Essa integral tem forma de soma, no caso das distribuições discretas. Então, duas variáveis aleatórias reais  e  têm a mesma distribuição se  para qualquer função , tal que existe pelo menos um dos dois termos da igualdade.

Distribuição multidimensional[editar | editar código-fonte]

Distribuição normal bidimensional ou produto de duas distribuições normais unidimensionais.
Uma distribuição de probabilidade é chamada de multidimensional ou -dimensional[17] quando descreve vários valores (aleatórios) de um fenômeno aleatório, por exemplo, no lançamento de dois dados a distribuição de probabilidade dos dois resultados é uma distribuição bidimensional. Então, a característica multidimensional aparece por meio da transferência por uma variável aleatória de um espaço de probabilidade  para um espaço numérico , de dimensão , por exemplo, no lançamento de dois dados a dimensão é  e o espaço  é . A distribuição multidimensional também é chamada de distribuição conjunta.[18]
Um exemplo importante da distribuição multidimensional é a probabilidade produto , em que  e  são duas distribuições unidimensionais. Essa distribuição de probabilidade é uma distribuição de um par de variáveis aleatórias independentes.[19] Esse é o caso do exemplo do lançamento de dois dados.
Definição — Seja uma variável aleatória  no espaço de probabilidade , com valores em  equipada com produtos de algebras de Borel . A distribuição da variável aleatóriaé a medida de probabilidade  definida para todo 
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



A variável aleatória  é identificada[20] a um vetor aleatório de dimensões . O teorema de Cramer-Wold[21] estabelece que a distribuição (-dimensional) do vetor aleatório é completamente determinado pelas distribuições (unidimensionais) de todas as combinações lineares dos componentes:  para todo .

Distribuição absolutamente contínua[editar | editar código-fonte]

Ilustração de três esquemas em branco e preto, com uma nuvem de pontos em forma de triângulo à esquerda e duas curvas à direita. Elas representam duas coordenadas (dimensão 1 e dimensão 2) de dois pontos que se aproximam cada uma com uma distribuição normal. Isto é, uma simulação de distribuição bidimensional em que as duas distribuições marginais são normais.
Uma distribuição bidimensional ou -dimensional é chamada de absolutamente contínua[22] em  quando a distribuição é absolutamente contínua em relação à medida de Lebesgue em . Isto é, se a distribuição da variável aleatória correspondente é descrita como
 ,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


para todo 

Distribuição marginal[editar | editar código-fonte]

Ver artigo principal: Distribuição marginal
Uma distribuição marginal de um vetor aleatório é a distribuição dos seus componentes. Para obter-la, projeta-se a distribuição em um espaço unidimensional de uma coordenada desejada. A distribuição de probabilidade da -ésima coordenada de um vetor aleatório é chamada de -ésima distribuição marginal .[23] A distribuição marginal  de  é obtida pela fórmula
 ,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


para todo .
As distribuições marginais de uma distribuição absolutamente contínua são expressas com suas densidades marginais.[23]

Distribuição condicional[editar | editar código-fonte]

Ver artigo principal: Probabilidade condicionada
Ilustração de uma árvore binária de dois andares orientada da esquerda para a direita. Ela representa a aplicação de uma distribuição condicional, em que + significa que o indivíduo é positivo para o teste de drogas e U significa que o indivíduo é usuário de drogas  é a probabilidade de o teste ser positivo para um indivíduo usuário de drogas.
Uma distribuição de probabilidade condicional permite descrever o comportamento de um fenômeno aleatório quando a informação sobre o processo é conhecida. Em outras palavras, a probabilidade condicional permite avaliar o grau de dependência estocástica entre dois eventos,[24] por exemplo, no lançamento de dois dados a distribuição condicional pode dar a soma dos resultados sabendo que o resultado do lançamento de um dos dois dados foi pelo menos quatro.

Definição para eventos[editar | editar código-fonte]

A probabilidade condicional é definida[25] em eventos pela probabilidade : a probabilidade de um evento A qualquer condicionado a um evento B. Para quaisquer  e  da σ-álgebra subjacente tal que 
.

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Em probabilidade e em estatística, a distribuição de probabilidade[26]  comumente usada em distribuição da probabilidade total ou no teorema de Bayes.

Definição para variáveis aleatórias[editar | editar código-fonte]

A probabilidade condicional também é definida para as variáveis aleatórias. Seja uma variável X condicional a uma variável Y. Quando , a distribuição de  dado  é definida por[26]
.

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


A definição acima não é válida se a distribuição de Y for absolutamente contínua dado que  para todo . A definição seguinte é válida para quaisquer das duas variáveis aleatórias.
Definição[27]  Seja  um par de variáveis aleatórias reais. Há uma distribuição de probabilidade , chamada de distribuição condicional de  dado  ou dado  definida pela e para qualquer função limitada boreliana  quase certamente.

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


A distribuição também é denotada como  ou . A igualdade anterior é uma igualdade entre variáveis aleatórias.[28]

Definição para σ-álgebra[editar | editar código-fonte]

De maneira mais geral, a distribuição de probabilidade é definida a partir da esperança condicional de uma variável aleatória  dada uma σ-álgebra . Essa esperança condicional é a única variável aleatória -mensurável denotada como , satisfazendo  para todo , variável -mensurável. Então, a distribuição condicional é definida por[29] , em que  é a função indicadora.

Definição para distribuições absolutamente contínuas[editar | editar código-fonte]

No caso das distribuições absolutamente contínuas, existe uma função densidade condicional de uma distribuição em relação a outra e vice-versa. Se  é a densidade da distribuição bidimensional, as duas densidades condicionais são dadas por[30]
 e .
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


 e  são as duas distribuições marginais de  e , respectivamente. Em substituição das integrais pelas somas, obtém-se fórmulas semelhantes quando as distribuições marginais são discretas ou quando a distribuição marginal de  é discreta e de  é absolutamente contínua ou vice-versa.[31]

Distribuição com valores em um espaço de Banach[editar | editar código-fonte]

Porque  é um espaço de Banach, as distribuições dos valores em um espaço de Banach são generalizações das distribuições dos valores reais. A definição é semelhante.[32]
Definição — Sejauma variável aleatória em um espaço de probabilidade com valores em um espaço de Banach  com σ-álgebra  gerada pelos conjuntos abertos de . A distribuição de probabilidade da variável aleatória e a medida de probabilidade definida pelo espaço mensurável por para todo .
Para obter boas propriedades, é comum considerar as medidas de probabilidade tight. Isto é, Intuitivamente, são as medidas concentradas em seu espaço compacto e com a suposição que o espaço de Banach é separável.[33]
Um possível exemplo do espaço de Banach é o espaço das funções contínuas . Um processo estocástico de uma família de variáveis aleatórias  indexadas por conjunto de índices . Uma definição possível da distribuição de probabilidade de tal processo é chamada de distribuição finita-dimensional.[34] Isto é, a distribuição multidimensional dos vetores  quando . Então, a distribuição pode ser estendida pelo teorema da extensão de Carathéodory para todo o processo. Um exemplo é movimento browniano (trajetórias contínuas), cuja distribuição de probabilidade é a medida de Weiner[35] geralmente denotada por  para todo subconjunto  de .

Espaço de distribuições de probabilidade[editar | editar código-fonte]

Uma distribuição de probabilidade é uma medida de massa total unitária. O conjunto de distribuições de probabilidade é um subespaço do espaço de medidas finitas. Esse espaço é muitas vezes denominado[36]  ou  pelas distribuições de probabilidade reais. No restante da seção, as propriedades desse espaço são detalhadas para as distribuições de probabilidade no conjunto dos números reais. Embora também possam ser detalhadas para distribuições em espaços de Banach.
É possível fornecer esse espaço com uma topologia chamada topologia fraca.[36] Essa topologia define uma convergência fraca das distribuições de probabilidade: uma sequência de distribuições de probabilidade  converge fracamente para uma distribuição de probabilidade  se
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


para toda função contínua  de um conjunto limitado.
A convergência é denominada .[36] Essa convergência é refletida pelo teorema de transferências de variáveis aleatórias  das respectivas distribuições . Então, a convergência de variáveis aleatórias é chamada convergência em distribuição (ou fraca) é denotada  ou . O termo convergência fraca das variáveis aleatórias é mais frequentemente utilizado.
O espaço de distribuições de probabilidade com topologia fraca é[37] um espaço métricocompleto e separável (no caso de um espaço de Banach também separável), tornando-se um espaço polonês.

Propriedades[editar | editar código-fonte]

Parâmetros e famílias[editar | editar código-fonte]

Certas distribuições são agrupadas por família em relação a certas propriedades da sua densidade ou da sua função massa de acordo com o número de parâmetros que as definem, chamados de família paramétrica de distribuição de probabilidade.[38]
Ilustração de diferentes curvas de Gauss assimétricas. Ela representa diferentes parâmetros de forma (assimetria) para densidade de probabilidade da distribuição normal assimétrica.

Parâmetros[editar | editar código-fonte]

Os chamados parâmetros de posição[38] influenciam a tendência central da distribuição de probabilidade. Isto é, o valor ou os valores em torno dos quais a distribuição leva seus maiores valores como a esperança, a mediana, a moda, os quantils e os decils.
Différentes courbes de Gauss
Ilustração de diferentes curvas de Gauss. Ela representa diferentes parâmetros de posição () e parâmetros de escala () para densidade de probabilidade da distribuição normal.
Os chamados parâmetros de escalonamento[38] influenciam a dispersão ou o achatamento da distribuição de probabilidade como a variância (momento de segunda ordem), o desvio padrão e o intervalo interquartil.
Os chamados parâmetros de forma[38] são outros parâmetros relacionados a distribuição de probabilidade. A cauda de uma distribuição de probabilidade real faz parte da sua forma. As caudas da esquerda e da direita são[39] dos tipos  e , respectivamente. Uma distribuição de probabilidade é chamada de cauda pesada se a medida de probabilidade da cauda  tende mais lentamente a 0, quando  vai para infinito, do que a distribuição normal.[40] Especialmente para qualquer distribuição absolutamente contínua e centrada, adefinição pode ser representada em termos de densidade:[41]
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


é uma distribuição com caudas direita e esquerda pesadas.
assimetria (momento de terceira ordem[42]) é um exemplo de parâmetro de forma, que permite tornar a cauda da direita mais ou menos pesada.[43] A curtose (momento de quarta ordem[42]) é usada para apoiar ou opor-se aos valores próximos da média daqueles que estão mais distantes. Uma distribuição de probabilidade é chamada de mesocúrtica, leptocúrtica ou platicúrtica se a curtose é 0, positiva ou negativa.

Famílias[editar | editar código-fonte]

Uma distribuição é chamada de família exponencial a um parâmetro[44] se sua densidade de probabilidade ou sua função massa depende de apenas uma parâmetro  da seguinte forma:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Uma distribuição é chamada de família potência a dois parâmetros[44]  e  se a densidade:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Distribuição direcional[editar | editar código-fonte]

Quando uma distribuição de probabilidade multidimensional representa a direção aleatória de um fenômeno, ela é chamada de direcional. É uma distribuição de um vetor aleatório unitário de dimensão , em que , ou, de maneira equivalente, é uma distribuição de probabilidade na esfera de dimensão . Uma distribuição direcional de dimensão d pode ser representada por um vetor (-1-dimensional) em coordenadas polares como as distribuições de von Mises e de Bingham.[45]

Momentos[editar | editar código-fonte]

Ver artigo principal: Momento (estatística)
Se existir, o -ésimo momento de uma distribuição de probabilidade  é definido como . Essa fórmula é descrita[46] simplesmente como  caso a distribuição seja definida a partir de uma variável aleatória .
O primeiro momento ou momento de ordem 1 também é chamado de esperança da distribuição. Quando o momento é igual a 0, a distribuição é chamada centrada. O segundo momento ou momento de ordem 2 também é chamado de variância da distribuição. Quando o momento é igual a 1, é dito que a distribuição é reduzida.
De uma maneira geral, a coleção de todos os momentos  de uma distribuição de probabilidade não é suficiente para caracterizar essa distribuição.[47] Certas distribuições são definidas por um número finito do seu momento: a distribuição de Poisson é completamente definida por sua esperança,[48] a distribuição normal é completamente definida por seus dois primeiros momentos.[49] Certas distribuições não possuem momento como a distribuição de Cauchy.

Entropia[editar | editar código-fonte]

As distribuições de probabilidade permitem representar fenômenos aleatórios. A entropia de Shannon de uma distribuição de probabilidade foi introduzida em termodinâmica para quantificar a desordem molecular de um sistema.[50] O objetivo é medir a falta da informação em lei de probabilidade.[51] A entropia foi definida pela primeira vez para as distribuições discretas, tendo sido estendida para as distribuições absolutamente contínuas. Para uma distribuição discreta  e uma distribuição  de densidade , a entropia  é definida respectivamente como[50][52]
 e .
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


  • A distribuição normal é a entropia máxima para todas as distribuições possíveis que possuem a mesma média e o mesmo desvio padrão.[9]
  • A distribuição geométrica é a entropia máxima para todas as distribuições discretas que possuem a mesma média.[9]
  • A distribuição uniforme contínua é a entropia máxima para as distribuições com suporte limitado.
  • A distribuição exponencial é a entropia máxima para todas as distribuições em  que possuem a mesma média.[9] 
  • As distribuições lei de potência como a lei de Zipf são a entropia máxima entre aqueles que tem a mesma média de logaritmo.
O estado de entropia máxima é o estado mais desordenado, mais estável e mais provável de um sistema.[51] Essas leis são os menos evitável de todas as leis compatíveis com as observações ou as condições. Portanto, a única forma objetiva de qualifica-las como distribuições de probabilidade a priori. Essa propriedade tem um papel importante na inferência bayeseana.

Classificação das distribuições de probabilidade na reta real[editar | editar código-fonte]

Representação de três funções de distribuição de distribuições de probabilidade:
  • em vermelho: distribuição absolutamente contínua (normal padrão);
  • em azul: distribuição discreta (distribuição de Poisson de parâmetro 2);
  • em preto: distribuição mista (combinação linear de uma medida de Dirac -2, uma medida de Dirac -1 e uma distribuição de Cauchy de parâmetros -2 e 1.
Distribuições de probabilidade em aplicações mais comuns são distribuições discretas e distribuições absolutamente contínuas. Entretanto, existem distribuições de probabilidade que não são nem discretas nem absolutamente contínuas.[48]

Distribuições discretas[editar | editar código-fonte]

Definição[editar | editar código-fonte]

Ilustração de linha abscissa preta com três pontos discretos. O suporte da distribuição discreta é composto por {1}, {3} e {7} com probabilidades associadas 0,2, 0,5 e 0,3, respectivamente.
Uma distribuição de probabilidade  é concentrada[48] ou é realizada em um conjunto  quando . Uma distribuição de probabilidade  é chamada de discreta[11][12] se um conjunto  é um conjunto finito ou contável.
O elemento  é chamado de átomo de uma distribuição de probabilidade  quando  e . O conjunto de átomos de uma distribuição discreta é finito ou contável. De modo geral, essa propriedade é válida para toda medida -finita. Para uma distribuição de probabilidade real, o conjunto de átomos é exatamente o conjunto de pontos de descontinuidade de sua função de distribuição.[53] Neste caso, a finitude do conjunto de átomos é dada a partir do fato que a função de distribuição é limitada.[54]
Um critério suficiente para uma distribuição de probabilidade ser discreta é que  seja finito ou contável.
Se  é discreto, então ele se concentra em particular no conjunto (finito ou contável) dos seus átomos . Para definir  é preciso definir o conjunto dos pares:[48] , em que  é a função de massa de . Então, obtém-se
,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


em que  é a medida de Dirac[13][22] no ponto .
No caso em que a distribuição de probabilidade é definida a partir de uma variável aleatória, os conceitos anteriores são usados para a variável aleatória: uma variável aleatória , concentrada em conjunto , é discreta, se a distribuição  concentrada em , é discreta. Os mesmo átomos de  são os átomos de .[55]
Para uma variável aleatória discreta , o teorema de transferência é expresso na forma de somas ou de séries[55]
, para toda função ,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


, para todo .

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Geralmente a função de distribuição de uma distribuição discreta é constante seccionalmente.[48] Uma distribuição discreta pode ser representada por um gráfico de barras.[11]